
Optimizing the MPEG-4 Encoder - Advanced Diamond Zonal Search

Alexis M. Tourapis ‡, Oscar C. Au ‡, Ming L. Liou ‡, Guobin Shen ‡, Ishfaq Ahmad †

Department of Electrical and Electronic Engineering ‡,
Department of Computer Science †,

The Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong.

Email: {alexis, eeau, eeliou, eesgb, iahmad} @ust.hk

Abstract
Motion Estimation (ME) is an important part of the MPEG-4

encoder, due to its significant impact on the bitrate and the output
quality of the encoded sequence. Unfortunately this feature occupies
a significant part of the encoding time especially when using the
straightforward Full Search (FS) algorithm. The Diamond Search
(DS) was recently accepted as a fast motion estimation algorithm for
the MPEG-4 VM. In this paper we propose a new algorithm named
Advanced Diamond Zonal Search (ADZS), which is significantly
faster than DS (in terms of number of checking points and total
encoding time) and gives similar, if not better, quality (in terms of
PSNR) of the output sequence. This is more obvious in the high bit
rate cases. Our experiments verify the superiority of the proposed
algorithm.

1. Introduction
MPEG-4 delivers new capabilities and functionalities to the

world of multimedia with emphasis on interactivity, which though
usually means real time processing.

Key parts of efficient video coding have always been motion
estimation and compensation. By using motion estimation and
compensation techniques, we are able to exploit the temporal
correlation that exists between frames of video sequences and thus
achieve high compression.

In MPEG-4 the technique of block matching motion estimation
is the one used due to its simplicity. The current frame is first
divided into square blocks of pixels. Then for each one of these
blocks we try to find a block in a reference frame that is the closest
to it, according to a predetermined criterion. This block is used as a
predictor for the current one and the displacement between them
defines a motion vector associated with the current block.

The distortion measure used is the sum of absolute errors (SAE
or SAD) because it does not require any multiplication and gives
similar performance as the mean square error (MSE). If a maximum
displacement of p pixels/frame is allowed, then we will have (2p+1)2
locations to search for the best match of the current block. The
algorithm that examines all these locations is called the brute force
exhaustive search (or full search (FS)). As previous experiments
have shown [5]-[8], this algorithm could use a significant part of the
computational power of the encoder, which could reach up to even
80% and higher. Unfortunately such an amount is extremely
inappropriate for real time applications such as in the case of
MPEG-4, as previously mentioned.

This research was partially supported by a grant from the Hongkong
Telecom Institute of Information Technology and a grant from the Industry
Department of Hong Kong Government.

In an effort to reduce the complexity in the MPEG-4 encoder,
the Diamond Search (DS) Algorithm [9]-[10] was proposed and
initially adopted in the standard. The algorithm was able to reduce
complexity without, in most cases, significantly affecting the quality
of the video stream. Unfortunately it was found that the algorithm
had poor performance in some cases, especially cases with relatively
large global motion.

In this paper we propose a new algorithm, which not only can
further decrease the computational complexity of the MPEG-4
encoder compared to the DS algorithm, but is also more robust and
can achieve better performance in terms of quality for cases with
large global motion. The algorithm is actually an improvement of
our previous work in [1]-[4].

2. Advanced Diamond Zonal Search (ADZS)
Most if not all of the existing motion estimation algorithms do

not take into consideration, even implicitly, the bits required to
encode the motion vectors, and thus are not exactly optimal as far as
the overall system performance is concerned. They usually speed up
the motion estimation process at the cost of significantly lower
quality. Our proposed algorithm, named Advanced Diamond Zonal
Search (ADZS) solves this problem by defining diamond shaped
zones around a center, searching one zone at a time starting from the
innermost zone, and going outward until a good enough motion
vector is found. The SAD is used as the distortion measure. Several
thresholds are used in determining whether a motion vector is good
enough. This algorithm takes advantage of the center-biased
property of motion vectors by favoring inner zones (smaller motion
vectors). Huge speed up is possible when it stops searching at an
inner zone.

The algorithm is actually an improvement of the algorithm of
DZS-ER, previously proposed in [7]. Zonal algorithms have been
proved of being able to provide great flexibility at great speed and
with good performance.

There are several reasons why we are proposing the Diamond
Zonal pattern instead of the Circular one, as proposed in [1]. First of
all, the diamond pattern is much more regular than the circular,
which makes the algorithm easier and simpler to implement,
especially for hardware. It was also found that motion vectors are
coded in a pattern more similar to a diamond in terms of bits [4], and
thus the pattern can help slightly in the overall performance of the
estimation. Finally, the zones defined using the diamond pattern,
contain fewer checking points than the ones designed using the
circular pattern, something that can significantly increase speed up
(approximately 50% increase).

As was previously shown [2], thresholds and thresholds alone
cannot always ensure algorithmic performance, especially for high
activity or fast sequences. By setting their values too high,

degradation of the video quality will be inevitable. For this reason,
introducing the Half-Stop (HS) Criterion makes it possible, for such
cases, to significantly enhance the speed up performance of our
algorithm without reducing quality. This criterion considers the
probability of finding a better match after examining a number of
zones following the current best match.

-6

-5

-4

-3

-2

-1

0

+1

+2

+3

+4

+5

+6

+7

-7

+6 +7+4 +5+2 +30 +1-2 -1-4 -3-6 -5-7

0 1

1

1

1 2

2

2

2

2

3

2

2 3

3

33

3

3

3

3

3 3

a

b

b

b

b

c

c

d

c

c

c

c

c

c

minimum block after
examining all zones in

center group

predicted from
previous block

D

D

D

DC

C

C

capital letters denote
zones in group around

current best block
(radar Search)

d

d

d

d

d

d

d

d

d

Best match

4

4

4

4

4

4

4

4

4

4

4

4

4

2

4

4

4

e

e

e

e

e

e

e

e

e e

3

Fig. 1: Definition of the DZS-ER zones.

Finally with the Radar Zonal Search (RZS) [3] technique the
algorithm is further improved, since it is possible to reduce the
actual number of zones examined, especially considering that the
outermost zones always contain more checking points. RZS could
actually be considered as a local search technique, which tries to
refine the final result in case all previous criteria (thresholds and
HS) have failed. The combination of all three techniques (DZS, HS,
and RZS) was presented in [7] and was named as Diamond Zonal
Search with Embedded Radar (DZS-ER) algorithm (Fig. 1).

-6

-5

-4

-3

-2

-1

0

+1

+2

+3

+4

+5

+6

+7

-7

+6 +7+4 +5+2 +30 +1-2 -1-4 -3-6 -5-7

0 1

1

1

1 2

2

2

2

2

3

2

2 3

3

33

3

3

3

3

3 3

Diamond denotes most significant
zones. If MV lies within after

examining 1st least significant zone
(zone 2) then terminate search

4

4

4

4

4

4

4

4

4

4

4

4

4

2

4

4

4

3

Fig. 2: Advanced Diamond Zonal Search (ADZS)

By considering that the innermost zones usually have a higher
probability of containing the actual motion vector solution [11], we
may further improve our algorithm. The algorithm is modified to
give a higher priority to zones 0 and 1 around the current center (i.e.
the prediction or (0,0)). After examining these two zones, and if the

2nd zone is also examined but the best motion vector, up to this
point, lies within zones 0 and 1, it is very likely that this motion
vector could actually be the best motion vector, or at least a very
good candidate. Thus we may terminate, instead of continuing, our
search and select the current best match as our motion vector. It
could be said that this technique is a special case of the HS criterion,
with different parameters used for the two innermost zones (2 for 0th
and 1 for the 1st zone). It is rather obvious that the new criterion can
work in conjunction with the previously discussed criteria. The
partitioning of the zones in this manner, when using diamond shaped
zones is named Advanced Diamond Zonal Search (ADZS) (Fig. 2).

3. Algorithm for ADZS
Here is the algorithm for the proposed Advanced Diamond

Zonal Search (ADZS) for estimating the motion vector MV of the
current block. Note that a block B is considered to belong in
diamond shaped zone i if abs(Bx) + abs(By) = i, where Bx and By
correspond to the position of Block B.

Step 1: Set Last = False and MinZone = 0. Also set the following
parameters:
• thresholding (ie. thresa = 768 & thresb = 1792),
• Half-Stop criterion (ie. zsize = 3),
• Num of zones (ie. znum = pznum = 4).
If block is an edge block, depending to the position, do the
following:
• If block is on the first column, assume previous MV

to be equal to (0,0).
• If block is on the first row, select previous MV as the

prediction.
• If block is on the last column, assume above right

MV to be equal to (0,0).
Compute the predicted MV by using the previous, above,
and above-right MVs and by calculating their median.
If MVpredicted = (0,0), go to Step 9.
If floor(0.5 +√[(MVxpredicted)

2 +(MVypredicted)
2]) < 4 set

pznum for current block to 3.

(DZS around predicted motion vector)
Step 2: Construct pznum diamond shaped zones around MVpredicted

in the search window. Set i =0.
Step 3: If (i - MinZone)> zsize goto Step 23.
Step 4: Compute SAD for each search point in zone i.

Let MinSAD be the smallest SAD up to this point.
Let MinZone be the zone where the smallest SAD has
been found up to now.

Step 5: If (i = 2) and (Minzone!=2) goto Step 23.
Step 6: If MinSAD < thresa or LAST = true, goto Step 23.
Step 7: If thresa< MinSAD<thresb, set LAST = true.
Step 8: If i<pznum, set i= i+1and goto Step 3.

(DZS around (0,0))
Step 9: If LAST = true goto Step 23.

Else construct znum diamond shaped zones around (0,0) in
the search window. Set i=0, MinZone=-2.

Step 10: If (i - MinZone)> zsize goto Step 23.
Step 11: Compute SAD for each search point in zone i.

Let MinSAD be the smallest SAD up to this point.
Let MinZone be the zone where the smallest SAD has
been found up to now.

Step 12: If (i = 2) and (Minzone!=2) goto Step 23.
Step 13: If MinSAD< thresa or LAST = true, goto Step 23.

Step 14: If thresa< MinSAD< thresb, set LAST = true.
Step 15: If i<znum, set i= i+1and goto Step 10.

(DZS around best location – Embedded Radar)
Step 16: If LAST = true goto Step 23.

Construct 4 diamond shaped zones around the best
location found until now. Set i=1, MinZone=-1.
Note that if location is previously examined, then it is not
necessary to examine it again.

Step 17: If (i - MinZone)> zsize goto Step 23.
Step 18: Compute SAD for each search point in zone i.

Let MinSAD be the smallest SAD up to this point.
Let MinZone be the zone where the smallest SAD has
been found up to now.

Step 19: If (i = 1) and (Minzone!=1) goto Step 23.
Step 20: If MinSAD< thresa or LAST = true, goto Step 23.
Step 21: If thresa< MinSAD< thresb, set LAST = true.
Step 22: If i<4, set i= i+1 and goto Step 17.

(Final step. Use best MV found.)
Step 23: The motion vector is chosen according to the block

corresponding to MinMAD.

By performing an optional local half-pixel search, we can refine
this result even further.

4. Simulation Results
The proposed algorithm was embedded in the MPEG-4 VM

encoder and was tested under several cases. A more detailed
analysis of our experiments can be found in [8]. The algorithm was
compared versus the FS and DS algorithms.

Table 1 shows in detail the results of our simulations. It
demonstrates the average PSNR values, complexity and total
encoding time for each algorithm. Different bitrates and frame rates
for each sequence were chosen. For the first 4 sequences, Q2 rate
control (a VM5 rate control algorithm) with the IPPP… scheme was
used, where as for tennis and foreman we have used the TM5 rate
control algorithm, with M=1 and N=15 (IPP…IP…). Search areas
of (–16, +15.5) and (–32, +31.5) were used for all cases. The Line-
SAD corresponds to a small optimization preexisting in the MPEG-4
encoder, where, if the partial calculation of the SAD exceeds the
current minimum, the SAD calculation stops and we proceed to
process the next candidate. Complexity in terms of Line-SAD is also
included since it reflects more accurately the actual performance of
each algorithm. Columns named SC16/32 and SL16/32 correspond
to the ratios of complexity between FS and Fast Algorithms for
Checking points and Line-SAD respectively.

It is evident that the ADZS algorithm has similar or superior
performance to DS, in either speed-up or PSNR, for all cases
presented. For the first two cases (container and silence), and the
tennis sequence, even though PSNR is very similar, the speed up of
ADZS is almost double of that of DS. For news, the average PSNR
is slightly smaller, but the difference in video quality was not
actually visible. Still the speed-up of ADZS is again significant. In
coastguard, a sequence with significant scene variation (water in
coastguard), even though the speed up of both algorithms is
relatively similar, the PSNR value of ADZS is much higher than that
of DS. Finally, in foreman, the algorithm yields higher PSNR and is
much faster than DS. Apparently, ADZS can achieve slightly larger
speedup or slightly better PSNR.

The total timing required by the encoder for all simulations is
also shown in our table. From the results, it is evident that even

though fast motion estimation algorithms may be significantly faster
than FS, the total encoding time is non-proportionally reduced (only
2 to 5 times). This is expected since other portions of the MPEG-4
encoder also require substantial computation.

Even though we have set default parameters for the algorithm, it
is possible to give more flexibility to the system by allowing the
user to select different values for the above thresholds and criteria,
or even to disable or enable the different options. This allows the
user to achieve different tradeoffs between speed and quality,
depending on the application. The current thresholds have been
selected after performing extensive simulations and tests under
various testing conditions [6]. More powerful, adaptive techniques
for the selection of these parameters are currently under
development, which can enhance the performance of the algorithm
even further.

5. Conclusion
In this paper we have presented a new, efficient motion

estimation algorithm. Our results demonstrate its superiority versus
the DS algorithm. The algorithm can significantly reduce the
complexity of the MPEG-4 encoder vs. the FS algorithm without
sacrificing quality. It is also possible to refine performance by
modifying the different parameters of the algorithm, or by
introducing adaptive techniques.

6. References
[1] A.M. Tourapis, O.C. Au, and M.L. Liou, "Fast Motion Estimation

using Circular Zonal Search", Proc. of SPIE Sym. of Visual Comm. &
Image Processing, VCIP’99, Vol. 2, pp. 1496-1504, Jan. 25-27, 1999.

[2] A.M. Tourapis, O.C. Au, and M.L. Liou, "A High Performance
Algorithm for Fast Block Based Motion Estimation", Proc. of Picture
Coding Symposium, PCS’99, pp. 121-124, Apr 21-23, 1999.

[3] A.M. Tourapis, O.C. Au, and M.L. Liou, “An Adaptive Center (Radar)
Zonal based Algorithm for Motion Estimation,” Proc. Of 6th IEEE Int.
Conf. on Electronics, Circuits and Systems, ICECS’99, Sept 5-8, 1999.

[4] A.M. Tourapis, O.C. Au, M.L. Liou, and G. Shen, “An Advanced
Zonal Block Based Algorithm for Motion Estimation,” 1999 IEEE
International Conference on Image Processing (ICIP’99) Proceedings,
section 26PO3.1, Kobe, Japan, October 1999.

[5] A.M. Tourapis, O.C. Au, and M.L. Liou, “The Second Status Report of
Core Experiment on Fast Block-Matching Motion Estimation using
Half Stop Circular Zonal Search,” in ISO/IEC JTC1/SC29/WG11
MPEG9/m4239, Roma, Italy, December’98.

[6] A.M. Tourapis, O.C. Au, and M.L. Liou, “Status Report of Core
Experiment on Fast Block-Matching Motion Estimation using Half
Stop Zonal Search with Adaptive Search Area,” in ISO/IEC
JTC1/SC29/WG11 MPEG99/m4580, Seoul, Korea, March’99.

[7] A.M. Tourapis, O.C. Au, M.L. Liou, and G. Shen, “Status Report of
Core Experiment on Fast Block-Matching Motion Estimation using
Diamond Zonal Search with Embedded Radar,” in ISO/IEC
JTC1/SC29/WG11 MPEG99/m4917, Vancouver, Canada, July’99

[8] A.M. Tourapis, O.C. Au, M.L. Liou, and G. Shen, “Status Report of
Core Experiment on Fast Block-Matching Motion Estimation using
Advanced Diamond Zonal Search with Embedded Radar,” in ISO/IEC
JTC1/SC29/WG11 MPEG99/m4980, Melbourne, Australia, October’99

[9] S. Zhu and K.K. Ma, “A new diamond search algorithm for fast block
matching motion estimation,” Proc. of Int. Conf. Information,
Communications and Signal Processing, vol. 1, pp. 292-6, 1997.

[10] J.Y. Tham, S. Ranganath, M. Ranganath, and A.A. Kassim, “A Novel
Unrestricted Center-Biased Diamond Search Algorithm for Block
Motion Estimation,” IEEE Trans. On Circuits & Systems for Video
Technology, Vol. 8, Pp. 369-377, Aug. 1998.

[11] R. Li, B. Zeng, and M.L. Liou, "A new three-step search algorithm for
block motion estimation," IEEE Trans. on Circuits and Systems for
Video Technology, vol. 4, no. 4, Aug. 1994, pp. 438-42.

T
ab

le
 1

: P
SN

R
, c

om
pl

ex
ity

, a
nd

 to
ta

l e
nc

od
in

g
tim

e
of

 F
S,

 D
S,

 a
nd

 A
D

Z
S

Se
qu

en
ce

Si

ze

B
R

F

R
 S

A
 A

lg
or

ith
m

 P
SN

R
-Y

 P
SN

R
-U

 P
SN

R
-V

bi

ts

C
he

ck
 P

t.
SC

16
 S

C
32

L

in
e-

SA
D

SL

16
 S

L
32

 U
se

r
Sy

st
em

 T
ot

al
 S

T
16

 S
T

32

FS

29
.8

1
37

.5
4

36
.6

0
98

79
2

75
01

82
4

68
30

23
57

12

1.
6

1.
01

12

2.
6

D
S

29
.7

6
37

.4
3

36
.5

8
99

75
2

96
96

9
77

28

0
98

04
38

70

22

1
38

.5
1

0.
86

39

.3
7

3.
11

7.

73

16

A
D

Z
S

29
.7

8
37

.4
9

36
.6

7
98

96
0

42
84

0
17

5
63

4
43

25
75

15

8
50

0
37

.8
8

0.
68

38

.5
6

3.
18

7.

89

FS

29
.7

2
37

.5
5

36
.5

7
98

91
2

27
14

20
90

21

63
87

98
7

30
3.

3
0.

97

30
4.

2

D

S
29

.7
4

37
.4

8
36

.6
9

98
91

2
97

03
0

77

28
0

98
32

32

69

22
0

38
.4

2
0.

83

39
.2

5
3.

12

7.
75

C
on

ta
in

er

Q
C

IF

10

7.
5

32

A
D

Z
S

29
.7

9
37

.5
7

36
.6

3
99

13
6

43
14

8
17

4
62

9
43

36
49

15

8
49

9
37

.8
3

0.
84

38

.6
7

3.
17

7.

87

FS

30
.8

2
35

.2
1

36
.6

0
23

85
60

10

03
62

24

83
12

78
26

15

2.
5

1.
45

15

4

D

S
30

.9
2

35
.2

9
36

.7
3

23
90

24

14
61

41

69

24
8

15
63

45
9

53

16
3

51
.9

1.

28

53
.1

8
2.

9
6.

77

16

A
D

Z
S

30
.9

5
35

.3
8

36
.7

8
23

90
32

97

65
8

10
3

37
2

12
03

56
4

69

21
1

51
.2

5
1.

28

52
.5

3
2.

93

6.
85

FS

30

.9
0

35
.2

9
36

.6
3

23
89

92

36
31

17
15

25

42
15

25
5

35
8.

5
1.

49

36
0

D
S

30
.9

3
35

.3
4

36
.7

6
23

97
52

14

62
43

69

24

8
15

64
11

1
53

16

3
52

.1
8

1.
07

53

.2
5

2.
89

6.

76

Si
le

nc
e

Q
C

IF

24

10

32

A
D

Z
S

30
.8

5
35

.2
5

36
.7

3
23

98
08

98

45
9

10
2

36
9

12
08

70
3

69

21
0

51
.5

4
1.

04

52
.5

8
2.

93

6.
85

FS

34
.0

5
38

.0
4

38
.9

3
11

18
41

6
60

42
00

96

48
59

66
11

2

90

3.
2

3.
84

90

7

D

S
34

.0
2

38
.1

0
38

.9
7

11
19

58
4

83
27

99

73

27
6

78
59

30
7

62

20
4

30
7.

8
4.

27

31
2.

1
2.

91

7.
21

16

A

D
Z

S
33

.8
6

37
.9

9
38

.9
9

11
19

73
6

29
27

60

20
6

78
6

35
06

01
0

13
9

45
7

30
2.

6
5.

22

30
7.

8
2.

95

7.
31

FS

34

.0
3

37
.9

3
38

.8
5

11
15

93
6

22
99

98
93

3

16

01
39

71
25

22

46

3.
94

22

50

D
S

33
.9

9
38

.0
7

38
.9

9
11

19
33

6
83

57
73

72

27

5
79

24
85

7
61

20

2
30

7.
4

4.
09

31

1.
5

2.
91

7.

22

N
ew

s
C

IF

11
2

15

32

A
D

Z
S

33
.8

5
38

.0
2

38
.9

2
11

15
14

4
29

35
83

20

6
78

3
35

08
81

3
13

9
45

6
30

2.
8

4.
37

30

7.
2

2.
95

7.

33

FS

27
.0

3
38

.8
7

41
.6

5
11

12
57

6
40

14
48

96

43
69

58
22

1

76

7.
5

4.
7

77
2.

2

D

S
26

.4
4

38
.7

9
41

.4
6

11
13

23
2

81
13

84

49

18
8

10
97

97
46

40

13

6
21

7.
5

5.
49

22

3
3.

46

9.
50

16

A

D
Z

S
27

.0
7

39
.1

0
41

.6
5

11
12

40
0

83
73

08

48

18
3

10
63

69
65

41

14

0
21

5
5.

64

22
0.

6
3.

50

9.
61

FS

27

.0
6

38
.6

4
40

.9
9

11
12

65
6

15
30

00
00

0

14

94
26

11
89

21

14

5.
21

21

19

D
S

26
.4

7
38

.7
7

41
.5

9
11

17
36

0
81

86
03

49

18

7
11

07
28

82

39

13
5

21
8.

4
5.

21

22
3.

7
3.

45

9.
48

C
oa

st
gu

ar
d

C
IF

11

2
10

32

A
D

Z
S

27
.0

6
38

.9
9

41
.6

0
11

15
17

6
84

50
89

48

18

1
10

74
91

19

41

13
9

21
5.

6
5.

84

22
1.

5
3.

49

9.
57

FS

34

.5
1

40
.2

5
41

.4
7

51
21

91
2

56
77

05
60

46

60
55

39
3

87
7.

4
1.

54

87
8.

94

D
S

34
.0

7
39

.9
6

41
.1

7
51

21
84

8
12

07
84

2
47

17

9
15

32
94

81

30

96

32
1.

5
1.

63

32
3.

13
 2

.7
2

6.
53

16

A

D
Z

S
34

.4
1

40
.1

9
41

.4
5

51
21

77
6

73
09

42

78

29
6

94
88

13
9

49

15
5

31
4.

7
1.

75

31
6.

45
 2

.7
8

6.
67

FS

34

.8
4

40
.5

6
41

.7
5

51
21

96
0

21
61

06
38

0

14

69
59

38
41

21

09

1.
64

21

10
.6

D

S
34

.0
9

39
.9

7
41

.1
7

51
21

92
0

12
48

55
2

45

17
3

15
93

20
54

29

92

32

2.
7

1.
85

32

4.
55

 2
.7

1
6.

5

Fo
re

m
an

C

IF

51
2

15

32

A
D

Z
S

34
.4

0
40

.2
0

41
.4

6
51

21
78

4
73

12
38

78

29

6
94

79
10

8
49

15

5
31

3.
5

2.
35

31

5.
85

 2
.7

8
6.

68

FS

34
.9

8
41

.8
9

41
.0

1
10

24
09

68
 9

46
17

60
0

84
12

02
77

3

15

82

2.
50

15

84
.5

D

S
34

.9
2

41
.8

1
40

.9
3

10
24

12
00

13

83
39

7
68

25

9
12

72
99

04

66

22
1

52
3

2.
22

52

5.
22

 3
.0

2
7.

69

16

A
D

Z
S

34
.9

5
41

.8
3

40
.9

6
10

24
08

80

54
19

62

17
5

66
1

60
59

42
1

13
9

46
5

51
4.

8
2.

46

51
7.

26
 3

.0
6

7.
8

FS

35
.0

0
41

.9
1

41
.0

2
10

24
12

08
 3

58
18

52
40

28

17
02

14
17

40

34

2.
6

40
36

.6

D
S

34
.9

0
41

.8
1

40
.9

2
10

24
11

92

13
86

25
7

68

25
8

12
78

78
26

66

22

0
52

2.
9

2.
27

52

5.
17

 3
.0

2
7.

69

T
en

ni
s

SI
F

10
24

 3
0

32

A
D

Z
S

34
.9

1
41

.8
2

40
.9

5
10

24
10

80

54
47

57

17
4

65
8

60
85

03
7

13
8

46
3

51
3.

7
2.

15

51
5.

85
 3

.0
7

7.
83

