
Optimizing the MPEG-4 Encoder - Advanced Diamond Zonal Search 

Alexis M. Tourapis ‡, Oscar C. Au ‡, Ming L. Liou ‡, Guobin Shen ‡, Ishfaq Ahmad † 

Department of Electrical and Electronic Engineering ‡, 
Department of Computer Science †, 

The Hong Kong University of Science and Technology, 
Clear Water Bay, Kowloon, Hong Kong. 

Email: {alexis, eeau, eeliou, eesgb, iahmad} @ust.hk 
 

Abstract  
Motion Estimation (ME) is an important part of the MPEG-4 

encoder, due to its significant impact on the bitrate and the output 
quality of the encoded sequence. Unfortunately this feature occupies 
a significant part of the encoding time especially when using the 
straightforward Full Search (FS) algorithm. The Diamond Search 
(DS) was recently accepted as a fast motion estimation algorithm for 
the MPEG-4 VM. In this paper we propose a new algorithm named 
Advanced Diamond Zonal Search (ADZS), which is significantly 
faster than DS (in terms of number of checking points and total 
encoding time) and gives similar, if not better, quality (in terms of 
PSNR) of the output sequence. This is more obvious in the high bit 
rate cases. Our experiments verify the superiority of the proposed 
algorithm.  

1. Introduction 
MPEG-4 delivers new capabilities and functionalities to the 

world of multimedia with emphasis on interactivity, which though 
usually means real time processing.  

Key parts of efficient video coding have always been motion 
estimation and compensation. By using motion estimation and 
compensation techniques, we are able to exploit the temporal 
correlation that exists between frames of video sequences and thus 
achieve high compression.  

In MPEG-4 the technique of block matching motion estimation 
is the one used due to its simplicity. The current frame is first 
divided into square blocks of pixels. Then for each one of these 
blocks we try to find a block in a reference frame that is the closest 
to it, according to a predetermined criterion. This block is used as a 
predictor for the current one and the displacement between them 
defines a motion vector associated with the current block.  

The distortion measure used is the sum of absolute errors (SAE 
or SAD) because it does not require any multiplication and gives 
similar performance as the mean square error (MSE). If a maximum 
displacement of p pixels/frame is allowed, then we will have (2p+1)2 
locations to search for the best match of the current block. The 
algorithm that examines all these locations is called the brute force 
exhaustive search (or full search (FS)). As previous experiments 
have shown [5]-[8], this algorithm could use a significant part of the 
computational power of the encoder, which could reach up to even 
80% and higher. Unfortunately such an amount is extremely 
inappropriate for real time applications such as in the case of 
MPEG-4, as previously mentioned.  
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In an effort to reduce the complexity in the MPEG-4 encoder, 
the Diamond Search (DS) Algorithm [9]-[10] was proposed and 
initially adopted in the standard. The algorithm was able to reduce 
complexity without, in most cases, significantly affecting the quality 
of the video stream. Unfortunately it was found that the algorithm 
had poor performance in some cases, especially cases with relatively 
large global motion.  

In this paper we propose a new algorithm, which not only can 
further decrease the computational complexity of the MPEG-4 
encoder compared to the DS algorithm, but is also more robust and 
can achieve better performance in terms of quality for cases with 
large global motion. The algorithm is actually an improvement of 
our previous work in [1]-[4]. 

2. Advanced Diamond Zonal Search (ADZS) 
Most if not all of the existing motion estimation algorithms do 

not take into consideration, even implicitly, the bits required to 
encode the motion vectors, and thus are not exactly optimal as far as 
the overall system performance is concerned. They usually speed up 
the motion estimation process at the cost of significantly lower 
quality. Our proposed algorithm, named Advanced Diamond Zonal 
Search (ADZS) solves this problem by defining diamond shaped 
zones around a center, searching one zone at a time starting from the 
innermost zone, and going outward until a good enough motion 
vector is found. The SAD is used as the distortion measure. Several 
thresholds are used in determining whether a motion vector is good 
enough.  This algorithm takes advantage of the center-biased 
property of motion vectors by favoring inner zones (smaller motion 
vectors). Huge speed up is possible when it stops searching at an 
inner zone.  

The algorithm is actually an improvement of the algorithm of 
DZS-ER, previously proposed in [7]. Zonal algorithms have been 
proved of being able to provide great flexibility at great speed and 
with good performance.  

There are several reasons why we are proposing the Diamond 
Zonal pattern instead of the Circular one, as proposed in [1]. First of 
all, the diamond pattern is much more regular than the circular, 
which makes the algorithm easier and simpler to implement, 
especially for hardware. It was also found that motion vectors are 
coded in a pattern more similar to a diamond in terms of bits [4], and 
thus the pattern can help slightly in the overall performance of the 
estimation. Finally, the zones defined using the diamond pattern, 
contain fewer checking points than the ones designed using the 
circular pattern, something that can significantly increase speed up 
(approximately 50% increase).  

As was previously shown [2], thresholds and thresholds alone 
cannot always ensure algorithmic performance, especially for high 
activity or fast sequences. By setting their values too high, 



degradation of the video quality will be inevitable. For this reason, 
introducing the Half-Stop (HS) Criterion makes it possible, for such 
cases, to significantly enhance the speed up performance of our 
algorithm without reducing quality. This criterion considers the 
probability of finding a better match after examining a number of 
zones following the current best match.  
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Fig.  1: Definition of the DZS-ER zones. 

Finally with the Radar Zonal Search (RZS) [3] technique the 
algorithm is further improved, since it is possible to reduce the 
actual number of zones examined, especially considering that the 
outermost zones always contain more checking points. RZS could 
actually be considered as a local search technique, which tries to 
refine the final result in case all previous criteria (thresholds and 
HS) have failed. The combination of all three techniques (DZS, HS, 
and RZS) was presented in [7] and was named as Diamond Zonal 
Search with Embedded Radar (DZS-ER) algorithm (Fig.  1). 
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Fig.  2: Advanced Diamond Zonal Search (ADZS) 

By considering that the innermost zones usually have a higher 
probability of containing the actual motion vector solution [11], we 
may further improve our algorithm. The algorithm is modified to 
give a higher priority to zones 0 and 1 around the current center (i.e. 
the prediction or (0,0)). After examining these two zones, and if the 

2nd zone is also examined but the best motion vector, up to this 
point, lies within zones 0 and 1, it is very likely that this motion 
vector could actually be the best motion vector, or at least a very 
good candidate. Thus we may terminate, instead of continuing, our 
search and select the current best match as our motion vector. It 
could be said that this technique is a special case of the HS criterion, 
with different parameters used for the two innermost zones (2 for 0th 
and 1 for the 1st zone). It is rather obvious that the new criterion can 
work in conjunction with the previously discussed criteria. The 
partitioning of the zones in this manner, when using diamond shaped 
zones is named Advanced Diamond Zonal Search (ADZS) (Fig.  2).  

3. Algorithm for ADZS 
Here is the algorithm for the proposed Advanced Diamond 

Zonal Search (ADZS) for estimating the motion vector MV of the 
current block. Note that a block B is considered to belong in 
diamond shaped zone i if abs(Bx) + abs(By) = i, where Bx and By 
correspond to the position of Block B. 

Step 1: Set Last = False and MinZone = 0. Also set the following 
parameters: 
• thresholding (ie. thresa = 768  & thresb = 1792), 
• Half-Stop criterion (ie. zsize = 3),  
• Num of zones (ie. znum =  pznum = 4).  
If block is an edge block, depending to the position, do the 
following: 
• If block is on the first column, assume previous MV 

to be equal to (0,0). 
• If block is on the first row, select previous MV as the 

prediction. 
• If block is on the last column, assume above right 

MV to be equal to (0,0). 
Compute the predicted MV by using the previous, above, 
and above-right MVs and by calculating their median.  
If MVpredicted = (0,0), go to Step 9.  
If floor( 0.5 +√[(MVxpredicted)

2 +(MVypredicted)
2]) < 4  set 

pznum for current block to 3.  

(DZS around predicted motion vector) 
Step 2: Construct pznum diamond shaped zones around MVpredicted 

in the search window. Set i =0.  
Step 3: If (i - MinZone)> zsize goto Step 23.  
Step 4: Compute SAD for each search point in zone i.   

Let MinSAD be the smallest SAD up to this point.  
Let MinZone be the zone where the smallest SAD has 
been found up to now. 

Step 5: If (i = 2) and (Minzone!=2) goto Step 23.    
Step 6: If MinSAD < thresa or LAST = true, goto Step 23.  
Step 7: If thresa< MinSAD<thresb, set LAST = true.  
Step 8: If i<pznum, set i= i+1and goto Step 3. 

(DZS around (0,0)) 
Step 9: If LAST = true goto Step 23. 

Else construct znum diamond shaped zones around (0,0) in 
the search window. Set i=0, MinZone=-2. 

Step 10: If (i - MinZone)> zsize goto Step 23.  
Step 11: Compute SAD for each search point in zone i. 

Let MinSAD be the smallest SAD up to this point.  
Let MinZone be the zone where the smallest SAD has 
been found up to now. 

Step 12: If (i = 2) and (Minzone!=2) goto Step 23. 
Step 13: If MinSAD< thresa or LAST = true, goto Step 23. 



Step 14: If thresa< MinSAD< thresb, set LAST = true.  
Step 15: If i<znum, set i= i+1and goto Step 10. 

(DZS around best location – Embedded Radar) 
Step 16: If LAST = true goto Step 23. 

Construct 4 diamond shaped zones around the best 
location found until now. Set i=1, MinZone=-1. 
Note that if location is previously examined, then it is not 
necessary to examine it again.  

Step 17: If (i - MinZone)> zsize goto Step 23.  
Step 18: Compute SAD for each search point in zone i.  

Let MinSAD be the smallest SAD up to this point.  
Let MinZone be the zone where the smallest SAD has 
been found up to now. 

Step 19: If (i = 1) and (Minzone!=1) goto Step 23. 
Step 20: If MinSAD< thresa or LAST = true, goto Step 23. 
Step 21: If thresa< MinSAD< thresb, set LAST = true. 
Step 22: If i<4, set i= i+1 and goto Step 17. 

(Final step. Use best MV found.) 
Step 23: The motion vector is chosen according to the block 

corresponding to MinMAD.  

By performing an optional local half-pixel search, we can refine 
this result even further.  

4. Simulation Results 
The proposed algorithm was embedded in the MPEG-4 VM 

encoder and was tested under several cases. A more detailed 
analysis of our experiments can be found in [8]. The algorithm was 
compared versus the FS and DS algorithms. 

Table 1 shows in detail the results of our simulations. It 
demonstrates the average PSNR values, complexity and total 
encoding time for each algorithm. Different bitrates and frame rates 
for each sequence were chosen. For the first 4 sequences, Q2 rate 
control (a VM5 rate control algorithm) with the IPPP… scheme was 
used, where as for tennis and foreman we have used the TM5 rate 
control algorithm, with M=1 and N=15 (IPP…IP…). Search areas 
of (–16, +15.5) and (–32, +31.5) were used for all cases. The Line-
SAD corresponds to a small optimization preexisting in the MPEG-4 
encoder, where, if the partial calculation of the SAD exceeds the 
current minimum, the SAD calculation stops and we proceed to 
process the next candidate. Complexity in terms of Line-SAD is also 
included since it reflects more accurately the actual performance of 
each algorithm. Columns named SC16/32 and SL16/32 correspond 
to the ratios of complexity between FS and Fast Algorithms for 
Checking points and Line-SAD respectively. 

It is evident that the ADZS algorithm has similar or superior 
performance to DS, in either speed-up or PSNR, for all cases 
presented. For the first two cases (container and silence), and the 
tennis sequence, even though PSNR is very similar, the speed up of 
ADZS is almost double of that of DS. For news, the average PSNR 
is slightly smaller, but the difference in video quality was not 
actually visible. Still the speed-up of ADZS is again significant. In 
coastguard, a sequence with significant scene variation (water in 
coastguard), even though the speed up of both algorithms is 
relatively similar, the PSNR value of ADZS is much higher than that 
of DS. Finally, in foreman, the algorithm yields higher PSNR and is 
much faster than DS. Apparently, ADZS can achieve slightly larger 
speedup or slightly better PSNR.  

The total timing required by the encoder for all simulations is 
also shown in our table. From the results, it is evident that even 

though fast motion estimation algorithms may be significantly faster 
than FS, the total encoding time is non-proportionally reduced (only 
2 to 5 times). This is expected since other portions of the MPEG-4 
encoder also require substantial computation.  

Even though we have set default parameters for the algorithm, it 
is possible to give more flexibility to the system by allowing the 
user to select different values for the above thresholds and criteria, 
or even to disable or enable the different options. This allows the 
user to achieve different tradeoffs between speed and quality, 
depending on the application. The current thresholds have been 
selected after performing extensive simulations and tests under 
various testing conditions [6]. More powerful, adaptive techniques 
for the selection of these parameters are currently under 
development, which can enhance the performance of the algorithm 
even further. 

5. Conclusion 
In this paper we have presented a new, efficient motion 

estimation algorithm. Our results demonstrate its superiority versus 
the DS algorithm. The algorithm can significantly reduce the 
complexity of the MPEG-4 encoder vs. the FS algorithm without 
sacrificing quality. It is also possible to refine performance by 
modifying the different parameters of the algorithm, or by 
introducing adaptive techniques.  

6. References 
[1] A.M. Tourapis, O.C. Au, and M.L. Liou, "Fast Motion Estimation 

using Circular Zonal Search", Proc. of SPIE Sym. of Visual Comm. & 
Image Processing, VCIP’99, Vol. 2, pp. 1496-1504, Jan. 25-27, 1999. 

[2] A.M. Tourapis, O.C. Au, and M.L. Liou, "A High Performance 
Algorithm for Fast Block Based Motion Estimation", Proc. of Picture 
Coding Symposium, PCS’99, pp. 121-124, Apr 21-23, 1999. 

[3] A.M. Tourapis, O.C. Au, and M.L. Liou, “An Adaptive Center (Radar) 
Zonal based Algorithm for Motion Estimation,” Proc. Of 6th IEEE Int. 
Conf. on Electronics, Circuits and Systems, ICECS’99, Sept 5-8, 1999. 

[4] A.M. Tourapis, O.C. Au, M.L. Liou, and G. Shen, “An Advanced 
Zonal Block Based Algorithm for Motion Estimation,” 1999 IEEE 
International Conference on Image Processing (ICIP’99) Proceedings, 
section 26PO3.1, Kobe, Japan, October 1999. 

[5] A.M. Tourapis, O.C. Au, and M.L. Liou, “The Second Status Report of 
Core Experiment on Fast Block-Matching Motion Estimation using 
Half Stop Circular Zonal Search,” in ISO/IEC JTC1/SC29/WG11 
MPEG9/m4239, Roma, Italy, December’98. 

[6] A.M. Tourapis, O.C. Au, and M.L. Liou, “Status Report of Core 
Experiment on Fast Block-Matching Motion Estimation using Half 
Stop Zonal Search with Adaptive Search Area,” in ISO/IEC 
JTC1/SC29/WG11 MPEG99/m4580, Seoul, Korea, March’99. 

[7] A.M. Tourapis, O.C. Au, M.L. Liou, and G. Shen, “Status Report of 
Core Experiment on Fast Block-Matching Motion Estimation using 
Diamond Zonal Search with Embedded Radar,” in ISO/IEC 
JTC1/SC29/WG11 MPEG99/m4917, Vancouver, Canada, July’99 

[8] A.M. Tourapis, O.C. Au, M.L. Liou, and G. Shen, “Status Report of 
Core Experiment on Fast Block-Matching Motion Estimation using 
Advanced Diamond Zonal Search with Embedded Radar,” in ISO/IEC 
JTC1/SC29/WG11 MPEG99/m4980, Melbourne, Australia, October’99 

[9] S. Zhu and K.K. Ma, “A new diamond search algorithm for fast block 
matching motion estimation,” Proc. of Int. Conf. Information, 
Communications and Signal Processing, vol. 1, pp. 292-6, 1997. 

[10] J.Y. Tham, S. Ranganath, M. Ranganath, and A.A. Kassim, “A Novel 
Unrestricted Center-Biased Diamond Search Algorithm for Block 
Motion Estimation,” IEEE Trans. On Circuits & Systems for Video 
Technology, Vol. 8, Pp. 369-377, Aug. 1998. 

[11] R. Li, B. Zeng, and M.L. Liou, "A new three-step search algorithm for 
block motion estimation," IEEE Trans. on Circuits and Systems for 
Video Technology, vol. 4, no. 4, Aug. 1994, pp. 438-42. 



T
ab

le
 1

: P
SN

R
, c

om
pl

ex
ity

, a
nd

 to
ta

l e
nc

od
in

g 
tim

e 
of

 F
S,

 D
S,

 a
nd

 A
D

Z
S 

Se
qu

en
ce

 
Si

ze
 

B
R

 
F

R
 S

A
 A

lg
or

ith
m

 P
SN

R
-Y

 P
SN

R
-U

 P
SN

R
-V

 
bi

ts
 

C
he

ck
 P

t. 
SC

16
 S

C
32

 
L

in
e-

SA
D

 
SL

16
 S

L
32

 U
se

r 
Sy

st
em

 T
ot

al
 S

T
16

 S
T

32
 

FS
 

29
.8

1 
37

.5
4 

36
.6

0 
98

79
2 

75
01

82
4 

 
 

68
30

23
57

 
 

 
12

1.
6 

1.
01

 
12

2.
6 

 
 

D
S 

29
.7

6 
37

.4
3 

36
.5

8 
99

75
2 

96
96

9 
77

 
28

0 
98

04
38

 
70

 
22

1 
38

.5
1 

0.
86

 
39

.3
7 

3.
11

 
7.

73
 

16
 

A
D

Z
S 

29
.7

8 
37

.4
9 

36
.6

7 
98

96
0 

42
84

0 
17

5 
63

4 
43

25
75

 
15

8 
50

0 
37

.8
8 

0.
68

 
38

.5
6 

3.
18

 
7.

89
 

FS
 

29
.7

2 
37

.5
5 

36
.5

7 
98

91
2 

27
14

20
90

 
 

 
21

63
87

98
7 

 
 

30
3.

3 
0.

97
 

30
4.

2 
 

 
D

S 
29

.7
4 

37
.4

8 
36

.6
9 

98
91

2 
97

03
0 

77
 

28
0 

98
32

32
 

69
 

22
0 

38
.4

2 
0.

83
 

39
.2

5 
3.

12
 

7.
75

 

C
on

ta
in

er
 

Q
C

IF
 

10
 

7.
5 

32
 

A
D

Z
S 

29
.7

9 
37

.5
7 

36
.6

3 
99

13
6 

43
14

8 
17

4 
62

9 
43

36
49

 
15

8 
49

9 
37

.8
3 

0.
84

 
38

.6
7 

3.
17

 
7.

87
 

FS
 

30
.8

2 
35

.2
1 

36
.6

0 
23

85
60

 
10

03
62

24
 

 
 

83
12

78
26

 
 

 
15

2.
5 

1.
45

 
15

4 
 

 
D

S 
30

.9
2 

35
.2

9 
36

.7
3 

23
90

24
 

14
61

41
 

69
 

24
8 

15
63

45
9 

53
 

16
3 

51
.9

 
1.

28
 

53
.1

8 
2.

9 
6.

77
 

16
 

A
D

Z
S 

30
.9

5 
35

.3
8 

36
.7

8 
23

90
32

 
97

65
8 

10
3 

37
2 

12
03

56
4 

69
 

21
1 

51
.2

5 
1.

28
 

52
.5

3 
2.

93
 

6.
85

 
FS

 
30

.9
0 

35
.2

9 
36

.6
3 

23
89

92
 

36
31

17
15

 
 

 
25

42
15

25
5 

 
 

35
8.

5 
1.

49
 

36
0 

 
 

D
S 

30
.9

3 
35

.3
4 

36
.7

6 
23

97
52

 
14

62
43

 
69

 
24

8 
15

64
11

1 
53

 
16

3 
52

.1
8 

1.
07

 
53

.2
5 

2.
89

 
6.

76
 

Si
le

nc
e 

Q
C

IF
 

24
 

10
 

32
 

A
D

Z
S 

30
.8

5 
35

.2
5 

36
.7

3 
23

98
08

 
98

45
9 

10
2 

36
9 

12
08

70
3 

69
 

21
0 

51
.5

4 
1.

04
 

52
.5

8 
2.

93
 

6.
85

 

FS
 

34
.0

5 
38

.0
4 

38
.9

3 
11

18
41

6 
60

42
00

96
 

 
 

48
59

66
11

2 
 

 
90

3.
2 

3.
84

 
90

7 
 

 
D

S 
34

.0
2 

38
.1

0 
38

.9
7 

11
19

58
4 

83
27

99
 

73
 

27
6 

78
59

30
7 

62
 

20
4 

30
7.

8 
4.

27
 

31
2.

1 
2.

91
 

7.
21

 
16

 
A

D
Z

S 
33

.8
6 

37
.9

9 
38

.9
9 

11
19

73
6 

29
27

60
 

20
6 

78
6 

35
06

01
0 

13
9 

45
7 

30
2.

6 
5.

22
 

30
7.

8 
2.

95
 

7.
31

 
FS

 
34

.0
3 

37
.9

3 
38

.8
5 

11
15

93
6 

22
99

98
93

3 
 

 
16

01
39

71
25

 
 

 
22

46
 

3.
94

 
22

50
 

 
 

D
S 

33
.9

9 
38

.0
7 

38
.9

9 
11

19
33

6 
83

57
73

 
72

 
27

5 
79

24
85

7 
61

 
20

2 
30

7.
4 

4.
09

 
31

1.
5 

2.
91

 
7.

22
 

N
ew

s 
C

IF
 

11
2 

15
 

32
 

A
D

Z
S 

33
.8

5 
38

.0
2 

38
.9

2 
11

15
14

4 
29

35
83

 
20

6 
78

3 
35

08
81

3 
13

9 
45

6 
30

2.
8 

4.
37

 
30

7.
2 

2.
95

 
7.

33
 

FS
 

27
.0

3 
38

.8
7 

41
.6

5 
11

12
57

6 
40

14
48

96
 

 
 

43
69

58
22

1 
 

 
76

7.
5 

4.
7 

77
2.

2 
 

 
D

S 
26

.4
4 

38
.7

9 
41

.4
6 

11
13

23
2 

81
13

84
 

49
 

18
8 

10
97

97
46

 
40

 
13

6 
21

7.
5 

5.
49

 
22

3 
3.

46
 

9.
50

 
16

 
A

D
Z

S 
27

.0
7 

39
.1

0 
41

.6
5 

11
12

40
0 

83
73

08
 

48
 

18
3 

10
63

69
65

 
41

 
14

0 
21

5 
5.

64
 

22
0.

6 
3.

50
 

9.
61

 
FS

 
27

.0
6 

38
.6

4 
40

.9
9 

11
12

65
6 

15
30

00
00

0 
 

 
14

94
26

11
89

 
 

 
21

14
 

5.
21

 
21

19
 

 
 

D
S 

26
.4

7 
38

.7
7 

41
.5

9 
11

17
36

0 
81

86
03

 
49

 
18

7 
11

07
28

82
 

39
 

13
5 

21
8.

4 
5.

21
 

22
3.

7 
3.

45
 

9.
48

 

C
oa

st
gu

ar
d 

C
IF

 
11

2 
10

 

32
 

A
D

Z
S 

27
.0

6 
38

.9
9 

41
.6

0 
11

15
17

6 
84

50
89

 
48

 
18

1 
10

74
91

19
 

41
 

13
9 

21
5.

6 
5.

84
 

22
1.

5 
3.

49
 

9.
57

 
FS

 
34

.5
1 

40
.2

5 
41

.4
7 

51
21

91
2 

56
77

05
60

 
 

 
46

60
55

39
3 

 
 

87
7.

4 
1.

54
 

87
8.

94
 

 
 

D
S 

34
.0

7 
39

.9
6 

41
.1

7 
51

21
84

8 
12

07
84

2 
47

 
17

9 
15

32
94

81
 

30
 

96
 

32
1.

5 
1.

63
 

32
3.

13
 2

.7
2 

6.
53

 
16

 
A

D
Z

S 
34

.4
1 

40
.1

9 
41

.4
5 

51
21

77
6 

73
09

42
 

78
 

29
6 

94
88

13
9 

49
 

15
5 

31
4.

7 
1.

75
 

31
6.

45
 2

.7
8 

6.
67

 
FS

 
34

.8
4 

40
.5

6 
41

.7
5 

51
21

96
0 

21
61

06
38

0 
 

 
14

69
59

38
41

 
 

 
21

09
 

1.
64

 
21

10
.6

 
 

 
D

S 
34

.0
9 

39
.9

7 
41

.1
7 

51
21

92
0 

12
48

55
2 

45
 

17
3 

15
93

20
54

 
29

 
92

 
32

2.
7 

1.
85

 
32

4.
55

 2
.7

1 
6.

5 

Fo
re

m
an

 
C

IF
 

51
2 

15
 

32
 

A
D

Z
S 

34
.4

0 
40

.2
0 

41
.4

6 
51

21
78

4 
73

12
38

 
78

 
29

6 
94

79
10

8 
49

 
15

5 
31

3.
5 

2.
35

 
31

5.
85

 2
.7

8 
6.

68
 

FS
 

34
.9

8 
41

.8
9 

41
.0

1 
10

24
09

68
 9

46
17

60
0 

 
 

84
12

02
77

3 
 

 
15

82
 

2.
50

 
15

84
.5

 
 

 
D

S 
34

.9
2 

41
.8

1 
40

.9
3 

10
24

12
00

 
13

83
39

7 
68

 
25

9 
12

72
99

04
 

66
 

22
1 

52
3 

2.
22

 
52

5.
22

 3
.0

2 
7.

69
 

16
 

A
D

Z
S 

34
.9

5 
41

.8
3 

40
.9

6 
10

24
08

80
 

54
19

62
 

17
5 

66
1 

60
59

42
1 

13
9 

46
5 

51
4.

8 
2.

46
 

51
7.

26
 3

.0
6 

7.
8 

FS
 

35
.0

0 
41

.9
1 

41
.0

2 
10

24
12

08
 3

58
18

52
40

 
 

 
28

17
02

14
17

 
 

 
40

34
 

2.
6 

40
36

.6
 

 
 

D
S 

34
.9

0 
41

.8
1 

40
.9

2 
10

24
11

92
 

13
86

25
7 

68
 

25
8 

12
78

78
26

 
66

 
22

0 
52

2.
9 

2.
27

 
52

5.
17

 3
.0

2 
7.

69
 

T
en

ni
s 

SI
F 

10
24

 3
0 

32
 

A
D

Z
S 

34
.9

1 
41

.8
2 

40
.9

5 
10

24
10

80
 

54
47

57
 

17
4 

65
8 

60
85

03
7 

13
8 

46
3 

51
3.

7 
2.

15
 

51
5.

85
 3

.0
7 

7.
83

 

 


